Blog

September 22, 2021 / by Emanuele Osimo, Chain Florey Clinical Fellow, Imperial College London, and Visiting Researcher, University of Cambridge / In Accelerate-Spark data science residency

How can we … better understand the links between mental and physical health with machine learning?

I'm interested in finding out how mental and physical health are interlinked. I study this in serious mental illness, especially in schizophrenia. My long-term aim is understanding how to improve the treatments offered to patients, and help increase their quality of life. In order to do so, we need to disentangle different factors that contribute to a patient’s overall health. Data science and machine learning can help us understand the complex links between mental illness, physical health, and the genetic basis for conditions like schizophrenia.

Read more

July 08, 2021 / by Andreas Schachner, Department of Applied Mathematics and Theoretical Physics, University of Cambridge / In Accelerate-Spark data science residency

How can we…use data science to inform fundamental physics?

The past century has seen the most spectacular discoveries and theoretical developments in fundamental physics, but despite this success many questions of fundamental physics remain unanswered. In my PhD, I am focusing on string theory and its implications for our understanding of nature.To study string theories and interpret the physics it produces, we already use a heavy machinery of mathematical tools. Data science and machine learning offer a new route to interrogating how the predictions arising from string theories map onto the world around us.

Read more

July 08, 2021 / by Jesse Allardice, (formerly) Department of Physics, University of Cambridge / In Accelerate-Spark data science residency

How can we…create next-generation solar technologies using machine learning?

Solar photovoltaic technologies are vital for sustainable renewable energy. If we’re to make photovoltaics as effective as possible, we need advanced nanomaterials that optimally harvest the Sun’s electromagnetic spectrum. To design these materials, we need better understandings of the quantum dynamics and photo-physics at play. Machine learning can help develop these understandings by analysing high-dimensional datasets to reveal novel physics.

Read more

June 24, 2021 / by Nicola Moloney, Department of Biochemistry, University of Cambridge / In Accelerate-Spark data science residency

How can we…expedite data curation for understanding the cell biology of parasites?

Understanding the proteome – the set of proteins that a cell produces – is crucial in understanding how a cell works, and (in the case of a disease-causing organism) developing effective treatments. One important way to understand the proteome is to study where proteins are found within a cell - known as spatial proteomics. Spatial proteomics can use machine learning methods with quantitative proteomic data to determine where proteins are localised within a cell.

Read more

Older Entries Newer Entries